Blind spectral unmixing by local maximization of non-Gaussianity

نویسندگان

  • Cesar F. Caiafa
  • Emanuele Salerno
  • Araceli N. Proto
  • L. Fiumi
چکیده

We approach the estimation of material percentages per pixel (endmember fractional abundances) in hyperspectral remote-sensed images as a blind source separation problem. This task is commonly known as spectral unmixing. Classical techniques require the knowledge of the existing materials and their spectra, which is an unrealistic situation in most cases. In contrast to recently presented blind techniques based on independent component analysis, we implement here a dependent component analysis strategy, namely the MaxNG (maximum non-Gaussianity) algorithm, which is capable to separate even strongly dependent signals. We prove that, when the abundances verify a separability condition, they can be extracted by searching the local maxima of non-Gaussianity. We also provide enough theoretical as well as experimental facts that indicate that this condition holds true for endmember abundances. In addition, we discuss the implementation of MaxNG in a noisy scenario, we introduce a new technique for the removal of scale ambiguities of estimated sources, and a new fast algorithm for the calculation of a Parzen windows-based NG measure. We compare MaxNG to commonly used independent component analysis algorithms, such as FastICA and JADE. We analyze the efficiency of MaxNG in terms of the number of sensor channels, the number of available samples and other factors, by testing it on synthetically generated as well as real data. Finally, we present some examples of application of our technique to real images captured by the MIVIS airborne imaging spectrometer. Our results show that MaxNG is a good tool for spectral unmixing in a blind scenario. r 2007 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

تجزیه‌ ی تُنُک تصاویر ابرطیفی با استفاده از یک کتابخانه‌ ی طیفی هرس شده

Spectral unmixing of hyperspectral images is one of the most important research fields  in remote sensing. Recently, the direct use of spectral libraries in spectral unmixing is on increase. In this way  which is called sparse unmixing, we do not need an endmember extraction algorithm and the number determination of endmembers priori. Since spectral libraries usually contain highly correlated s...

متن کامل

Land Cover Subpixel Change Detection using Hyperspectral Images Based on Spectral Unmixing and Post-processing

  The earth is continually being influenced by some actions such as flood, tornado and human artificial activities. This process causes the changes in land cover type. Thus, for optimal management of the use of resources, it is necessary to be aware of these changes. Today’s remote sensing plays key role in geology and environmental monitoring by its high resolution, wide covering and low cost...

متن کامل

Blind Hyperspectral Unmixing

This paper introduces a new hyperspectral unmixing method called Dependent Component Analysis (DECA). This method decomposes a hyperspectral image into a collection of reflectance (or radiance) spectra of the materials present in the scene (endmember signatures) and the corresponding abundance fractions at each pixel. DECA models the abundance fractions as mixtures of Dirichlet densities, thus ...

متن کامل

On the conditions for valid objective functions in blind separation of independent and dependent sources

It is well known that independent sources can be blindly detected and separated, one by one, from linear mixtures by identifying local extrema of certain objective functions (contrasts), like negentropy, non-Gaussianity (NG) measures, kurtosis, etc. It was also suggested by Donoho in 1981, and verified in practice by Caiafa et al., that some of these measures remain useful for particular cases ...

متن کامل

Kurtosis maximization for blind identification of nonlinear communication channels

This paper presents an original approach for blind deconvolution of a nonlinear communication channel using a criterion based on the secondand fourth-order moments of the input sequence. This approach is a simple extension of kurtosis maximization a method well known in a linear blind identification. We illustrate through a simple example that kurtosis maximization may also be used in a general...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Signal Processing

دوره 88  شماره 

صفحات  -

تاریخ انتشار 2008